

Innovate Phytoceuticals Cannabis Method Validation Summary

Version Number: 3.0

Issue Date: January 30, 2023

Table of Contents

1)	SCO	OPE & PURPOSE	. 5
2)	PO	TENCY & CANNABINOID TESTING	. 6
2.	1	Method Details	. 6
2.	2	Linearity & Range	. 6
2.	3	Accuracy & Precision	. 7
2.	4	Limit of Detection & Limit of Quantification	. 8
2.	5	Summary	. 8
2.	6	Conclusion	. 9
3)	HE	AVY METAL TESTING	10
3.	1	Method Details	10
3.	2	Linearity & Range	10
3.	3	Accuracy & Precision	11
3.	4	Limit of Detection & Limit of Quantification	13
3.	5	Summary	13
2	6	Conclusion	14
5.	0	conclusion	
3. 4)	PES	STICIDE ANALYSIS ON GC-MS	15
3. 4) 4.	PES	STICIDE ANALYSIS ON GC-MS	15 15
3. 4) 4. 4.	PES 1 2	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range	15 15 15
3. 4) 4. 4. 4.	PES 1 2 3	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision	15 15 15 16
3. 4) 4. 4. 4. 4.	PES 1 2 3 4	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification	15 15 15 16 18
3. 4) 4. 4. 4. 4. 4.	PES 1 2 3 4 5	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary	15 15 15 16 18 18
4) 4. 4. 4. 4. 4. 4.	PES 1 2 3 4 5 6	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion	15 15 15 16 18 18 18
 4) 4. 4. 4. 4. 4. 5) 	PES 1 2 3 4 5 6 PES	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS	15 15 15 16 18 18 18 18
 4) 4. 4. 4. 4. 5) 5. 	PES 1 2 3 4 5 6 PES 1	STICIDE ANALYSIS ON GC-MS. Method Details. Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details.	15 15 15 16 18 18 18 18 19 19
 4) 4. 4. 4. 4. 5) 5. 	PES 1 2 3 4 5 6 PES 1 2	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details Linearity & Range	15 15 15 16 18 18 18 18 19 19 19
 4) 4. 4. 4. 4. 5) 5. 5. 	PES 1 2 3 4 5 6 PES 1 2 3	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details Linearity & Range Accuracy & Precision	15 15 15 16 18 18 18 19 19 19 20
 4) 4. 4. 4. 4. 5. 5. 5. 5. 	PES 1 2 3 4 5 6 PES 1 2 3 4	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification	15 15 15 16 18 18 18 19 19 19 20 21
 4) 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 	PES 1 2 3 4 5 6 PES 1 2 3 4 5	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification	15 15 15 16 18 18 18 19 19 19 20 21 21 21
 4) 4. 4. 4. 4. 5. 5. 5. 5. 5. 5. 5. 5. 	PES 1 2 3 4 5 6 PES 1 2 3 4 5 6	STICIDE ANALYSIS ON GC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion STICIDE ANALYSIS ON LC-MS Method Details Linearity & Range Accuracy & Precision Limit of Detection & Limit of Quantification Summary Conclusion	15 15 15 16 18 18 18 19 19 19 20 21 21 21 22

6.1	Method Details	23
6.2	Linearity & Range	23
6.3	Accuracy & Precision	23
6.4	Limit of Detection & Limit of Quantification	25
6.5	Summary	25
6.6	Conclusion	
7) TEI	RPENE ANALYSIS	
7.1	Method Details	
7.2	Linearity & Range	27
7.3	Accuracy & Precision	
7.4	Limit of Detection & Limit of Quantification	
7.5	Summary	29
7.6	Conclusion	29
8) RE	SIDUAL SOLVENTS	
8.1	Method Details	
8.2	Linearity & Range	
8.3	Accuracy & Precision	
8.4	Limit of Detection & Limit of Quantification	
8.5	Summary	
8.6	Conclusion	
9) MI	CROBIOLOGICAL TESTING – UNITED STATES PHARMACOPOEIA	
9.1	Method Details	
9.2	Selectivity & Identification	
9.3	Accuracy & Precision	
9.4	Summary	
9.5	Conclusion	
10) MI	CROBIOLOGICAL TESTING – EUROPEAN PHARMACOPOEIA	
10.1	Method Details	
10.2	Selectivity & Identification	
10.3	Accuracy & Precision	
10.4	Summary	40

10.5	Conclusion	40
11) DE	FINITIONS	41
12) AP	PENDICES	41
12.1	APPENDIX A – GC-MS PESTICIDE LIST	41
12.2	APPENDIX B – LC-MS PESTICIDE LIST	42
12.3	APPENDIX C – TERPENE LIST	43
12.4	APPENDIX D – RESIDUAL SOLVENT LIST	44

1) SCOPE & PURPOSE

This document is designed to provide a summary of Innovate Phytoceuticals' (INVP) internal validation for cannabis analytical testing methods. All data included herein are examples of validation data obtained by INVP at its analytical laboratory, located at 2-3485 Velocity Avenue, Kelowna BC, V1V 3C2.

The purpose of this document is to provide our clients with confidence that the methods we offer have been validated and found to be effective. It also provides confirmation that our analytical methods are capable of meeting all Health Canada requirements for cannabis testing.

Should you have any questions regarding the contents of this document, please do not hesitate to contact us.

2) POTENCY & CANNABINOID TESTING

2.1 Method Details

- I. Analysis of Cannabinoids using Ultra-High Performance Liquid Chromatography Diode Array Detection (UHPLC-DAD).
- II. This method is a modified United Nations Office on Drugs and Crime (UNODC) method based on the chromatography principles of the United States Pharmacopoeia (USP) General Chapter <621>.
- III. Complete method details are outlined in LAB-SOP-ANA-001 Analysis of Cannabinoids from Different Matrices by UHPLC-DAD.
- IV. This method is capable of identifying and quantifying THC, THCA, CBD, CBDA, CBDVA, THCV, CBG, CBGA, CBN, CBL, Δ^8 -THC, CBDV, THCVA, CBC, and CBCA.

2.2 Linearity & Range

Figure 2.2.1 provides a seven-point calibration curve for CBD, as an example:

- I. Calibration curves were completed on a seven-point range (0.1ppm, 0.5ppm, 1ppm, 5ppm, 10ppm, 50ppm & 100ppm). All cannabinoids have a range from 0.1-100ppm.
- II. The average R² value for all cannabinoids was 0.9999.

III. The average relative standard deviation (RSD) for all cannabinoid calibration curves was 0.9237%.

2.3 Accuracy & Precision

Table 2.3.1 shows a dried flower cannabis matrix run 3 times for repeatability of cannabinoids:

CANNABINOID	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
CBD	2.130	2.071	1.973	2.058	0.079	3.83%
CBDA	0.653	0.630	0.600	0.628	0.027	4.30%
ТНС	11.162	11.109	11.160	11.144	0.030	0.27%
THCA	125.52	125.42	125.40	125.45	0.064	0.05%
THCV	2.547	2.461	2.449	2.486	0.053	2.13%
CBGA	1.569	1.592	1.603	1.588	0.017	1.07%
CBN	0.445	0.455	0.454	0.451	0.005	1.11%

*All values shown are in ppm, unless otherwise indicated

Table 2.3.2 shows a califiable uncu nower matrix spiked with toppin CDDA.	Table 2.3.2 shows a	a cannabis dried	flower matrix	spiked with	10ppm CBDA:
---	---------------------	------------------	---------------	-------------	-------------

CANNABINOID	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
CBDA	9.208	9.024	9.103	9.11	0.094	1.04%	91.10%
THCA	124.35	124.81	125.39	124.85	0.520	0.42%	N/A
ТНС	9.65	9.69	9.65	9.66	0.023	0.24%	N/A

*All values shown are in ppm, unless otherwise indicated

|--|

CANNABINOID	MAX	MIN	MEAN	SD	RSD	% REC.
CBG	50.711	50.050	50.392	0.232	0.46%	100.78%

*All values shown are in ppm, unless otherwise indicated

Table 2.3.4 shows cannabis oil matrices with expected values of 20,000ppm of CBD, 20,000ppm CBG & 4,000ppm of THC:

CANNABINOID	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
CBD	19686.9	19915.7	20398.2	20000.3	363.14	1.82%	100.0%
CBG	22213.9	22423.1	22567.8	22401.6	177.93	0.79%	112.0%
ТНС	3944.6	3744.8	3954.7	3881.4	118.4	3.05%	97.04%

*All values shown are in ppm, unless otherwise indicated

Table 2.3.5 shows cannabis gummy matrices with expected values of 580ppm THC & <70ppm CBD.

CANNABINOID	RUN 1	RUN 2	RUN 3	RUN 4	MEAN	SD	RSD	% REC.
ТНС	553.74	544.55	543.96	543.05	546.33	4.982	0.91%	94.19%
CBD	34.45	37.81	37.59	35.89	36.43	1.58	4.33%	N/A

*All values shown are in ppm, unless otherwise indicated

Table 2.3.6 shows intermediate precision data for several cannabinoids in a dried flower matrix, run by different analysts on different days:

ANALYST 1	ТНС	THCA-A	CBD	CBGA	THCV
Run 1 (ppm)	10.0203	114.3655	2.0731	1.4572	2.2307
Run 2 (ppm)	9.8463	113.9518	1.9676	2.0804	2.1616
Run 3 (ppm)	10.3044	114.0934	1.8514	1.4431	2.0909
Mean	10.057	114.1369	1.9640	1.6602	2.1611
SD (ppm)	0.2312	0.2102	0.1108	0.3639	0.0699
RSD	2.3%	0.18%	5.65%	21.92%	3.23%
ANALYST 2	ТНС	THCA-A	CBD	CBGA	THCV
Run 1 (ppm)	11.1615	125.5157	2.1299	1.5692	2.5472
Run 2 (ppm)	11.1087	125.4230	2.0708	1.5923	2.4613
Run 3 (ppm)	11.1598	125.3955	1.9727	1.6031	2.4486
Mean	11.1433	125.4447	2.0578	1.5882	2.4857
SD (ppm)	0.03	0.062	0.079	0.0173	0.0536

*All values in ppm, unless otherwise indicated

- I. This dataset is an example, and it has been repeated for all cannabinoids across several matrices.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

2.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each cannabinoid in this method is 0.1ppm.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- IV. The LoD for each cannabinoid in this method is 0.01ppm.

2.5 Summary

Table 2.5.1 below provides a validation summary:

|--|

Average R ²	0.9999
Calibration Range	0.1-100ppm
LoQ	0.1ppm
LoD	0.01ppm
Specificity	Tested in various matrices, shown to be specific.
	Only CRMs used for calibrations.
Accuracy	±2%, with an RSD <1%
Repeatability	RSD <1%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times across several matrices.
Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Method tested with different UHPLC/HPLC
	systems, different columns, different detectors,
	liquid phases, etc. Additional experiments are
	currently in progress.

2.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

3) HEAVY METAL TESTING

3.1 Method Details

INNOVATE

hytoceuticals

- I. Analysis of heavy metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS).
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapters <232> and <233>.
- III. Complete method details are outlined in LAB-SOP-ANA-007 Analysis of Heavy Metals in Cannabis Samples by ICP-MS.

3.2 Linearity & Range

Figure 3.2.1 below shows calibration curves for Arsenic (As), Cadmium (Cd), Mercury (Hg) and Lead (Pb)

I. The average R² value for all heavy metals was 0.9997 across a range of 5-50ppb.

3.3 Accuracy & Precision

Table 3.3.1 below shows repeatability data for Arsenic from a dried cannabis flower matrix injected 3 times with 3 repeats per injection:

HEAVY METAL	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
⁷⁵ As	72.00	70.57	68.59	70.39	1.71	2.43%
⁷⁵ As	68.62	71.09	68.33	69.35	1.52	2.19%
⁷⁵ As	65.10	64.01	69.35	66.15	2.82	4.26%
Average				68.63	2.21	3.22%

*All values in ppb, unless otherwise indicated

Version: 3.0

Table 3.3.2 below shows repeatability data for Cadmium from a dried cannabis flower matrix injected 3 times with 3 repeats per injection:

HEAVY METAL	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
¹¹¹ Cd	173.01	181.19	170.82	175.01	5.46	3.12%
¹¹¹ Cd	169.56	177.86	181.87	176.43	6.28	3.56%
¹¹¹ Cd	184.23	174.68	178.34	179.08	4.82	2.69%
Average				176.84	2.07	1.17%

*All values in ppb, unless otherwise indicated

Table 3.3.3 below shows repeatability data for Mercury from a dried cannabis flower matrix injected 3 times with 3 repeats per injection:

HEAVY METAL	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
²⁰² Hg	2.65	2.77	2.85	2.76	0.10	3.62%
²⁰² Hg	2.78	2.74	2.74	2.75	0.02	0.73%
²⁰² Hg	2.79	2.80	2.62	2.74	0.10	3.65%
Average				2.75	0.01	0.36%

*All values in ppb, unless otherwise indicated

Table 3.3.4 below shows repeatability data for Lead from a dried cannabis flower matrix injected 3 times with 3 repeats per injection:

HEAVY METAL	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
²⁰⁸ Pb	26.54	26.36	27.30	26.73	0.49	1.83%
²⁰⁸ Pb	27.53	27.92	27.87	27.78	0.21	0.76%
²⁰⁸ Pb	28.51	28.47	28.04	28.34	0.26	0.92%
Average				27.62	0.82	2.97%

*All values in ppb, unless otherwise indicated

Table 3.3.5 shows intermediate precision data for a sample of dried flower cannabis, run by different analysts on different days:

ANALYST 1	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
⁷⁵ As	56.76	55.46	56.59	56.27	0.71	1.26%
¹¹¹ Cd	107.69	113.49	110.23	110.47	2.91	2.63%
²⁰² Hg	3.19	3.19	3.63	3.34	0.25	7.49%
²⁰⁸ Pb	27.79	27.84	27.64	27.77	0.10	0.36%
ANALYST 2	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
⁷⁵ As	48.15	51.11	44.59	47.95	3.26	6.79%
¹¹¹ Cd	130.77	132.86	129.58	131.07	1.66	1.27%
²⁰² Hg	2.70	2.69	2.91	2.77	0.12	4.33%

²⁰⁸ Pb 38.42 37.07 38.21 37.90 0.73 1.93	²⁰⁸ Pb	38.42	37.07	38.21	37.90	0.73	1.93%
---	-------------------	-------	-------	-------	-------	------	-------

*All values in ppb, unless otherwise indicated

- I. These experiments have been repeated across multiple cannabis matrices, including oils, extracts, and edibles.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

3.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each heavy metal in this method is 1ppb, except for Mercury which has an LoQ of 0.1ppb.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- IV. The LoD for each heavy metal in this method is 0.01ppb.

3.5 Summary

Table 3.5.1 below provides a validation summary:

PARAMETER	RESULT			
Average R ²	0.9997			
Calibration Range	5-50ppb			
LoQ	1ppb (0.1ppb for Hg)			
LoD	0.01ppb			
Specificity	Tested in various matrices, shown to be specific.			
	Only CRMs used for calibrations.			
Accuracy	±2%, with an RSD <5%			
Repeatability	RSD <0.1-2%			
Intermediate Precision	Intra-laboratory comparisons done multiple			
	times across several matrices.			
Reproducibility	Inter-laboratory comparisons currently in			
	progress.			
Robustness	Method tested with different extraction			
	solvents, different pH, etc. Additional			
	experiments are currently in progress.			

3.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

4) PESTICIDE ANALYSIS ON GC-MS

4.1 Method Details

(INNOVATE

hytoceuticals

- I. Analysis of pesticide residues by Gas Chromatography Mass Spectrometry (GC-MS)
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapter <561>.
- III. Complete method details are outlined in LAB-SOP-ANA-004 Pesticide Residues Analysis in Cannabis and Cannabis Products by GC-MS.
- IV. This method is capable of identifying 48 pesticide active ingredients included on the "Mandatory cannabis testing for pesticide active ingredients – List and Limits" published by Health Canada, and quantifying 11 of them.
- V. The remaining 85 pesticide active ingredients can be quantified by LC-MS (see Section 5 of this document).
- VI. The complete list of pesticide active ingredients that are quantifiable with this method can be found in Appendix A.

4.2 Linearity & Range

I. This method has a low calibration range (5-100ppb) and a high calibration range (100-2000ppb).

Figure 4.2.1 below shows the low calibration range for Quintozene, as an example:

INNOVATE

hytoceuticals

Figure 4.2.2 below shows the high calibration range for Quintozene, as an example:

- II. Calibrations are available for all 11 quantifiable pesticide active ingredients for this method (see Appendix A for the complete list).
- III. Average R² for all pesticide calibrations was 0.997.

4.3 Accuracy & Precision

Table 4.3.1 below shows a spiked sample of 1000ppb of Canadian Pesticide Mix to a dried flower cannabis matrix:

PESTICIDE	EXPECTED (ppb)	OBTAINED (ppb)	% RECOVERY
Etridiazole	1000	1016.226	101.6%
Quintozene	1000	1019.907	102.0%
MGK-264	1000	1019.872	101.9%
α -Endosulfan	1000	1010.726	101.1%
Chlorfenapyr	1000	1028.866	102.9%
β -Endosulfan	1000	1013.450	101.3%
Endosulfan sulfate	1000	1005.925	100.6%

Table 4.3.2 below shows repeatability data for a sample of pesticide active ingredients in a dried flower cannabis matrix:

PESTICIDE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Etridiazole	4.98	4.95	4.50	4.81	0.27	5.59%
MGK-264	5.08	5.08	4.75	4.97	0.19	3.83%
lpha-Endosulfan	5.93	5.81	5.58	5.77	0.18	3.08%
Quintozene	8.09	7.74	7.57	7.80	0.27	3.40%

*All values in ppb, unless otherwise indicated

Table 4.3.3 below shows repeatability data for a sample of pesticide active ingredients in a cannabis oil matrix:

PESTICIDE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Cyfluthrin	48.30	47.71	47.93	47.98	0.298	0.62%
Parathion-	5.69	5.66	6.27	5.87	0.344	5.85%
methyl						
Cypermethrin	10.41	9.97	9.75	10.04	0.336	3.35%
Chlorphenapyr	3.39	3.95	3.71	3.68	0.281	7.63%

*All values in ppb, unless otherwise indicated

Table 4.3.4 below shows intermediate precision data for a sample of pesticide active
ingredients in a cannabis oil matrix, run by different analysts on different days:

ANALYST 1	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Cyfluthrin	85.98	85.74	86.35	86.02	0.307	0.36%
Parathion- methyl	80.07	80.07	80.04	80.06	0.015	0.02%
Cypermethrin	73.06	79.10	73.74	75.30	3.308	4.39%
ANALYST 2	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Cyfluthrin	85.95	85.84	85.87	85.89	0.057	0.07%
Parathion- methyl	80.40	80.04	80.51	80.32	0.246	0.31%
Cypermethrin	72.87	72.01	73.86	72.91	0.926	1.27%

*All values in ppb, unless otherwise indicated

- I. This dataset is an example, and it has been repeated for all pesticide active ingredients detectable under this method, and across several matrices.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

4.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- III. The LoQ & LoD for each pesticide active ingredient in this method can be found in Appendix A.

4.5 Summary

INNOVATE

hytoceuticals

Table 4.5.1 below provides a validation summary:

PARAMETER	RESULT
Average R ²	0.997
Calibration Range	5-100ppb (low) & 100-2000ppb (high)
LoQ	See Appendix A
LoD	See Appendix A
Specificity	Tested in various matrices, shown to be specific.
	Only CRMs used for calibrations.
Accuracy	±3%, with an RSD ~2.5%
Repeatability	RSD <0.5-2.5%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times across several matrices.
Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Tested with different extraction solvents,
	different pH and different matrices Additional
	experiments are currently in progress.

4.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

5) PESTICIDE ANALYSIS ON LC-MS

5.1 Method Details

INNOVATE

hytoceuticals

- I. Analysis of pesticide residues by Liquid Chromatography Mass Spectrometry (LC-MS)
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapter <561>.
- III. Complete method details are outlined in LAB-SOP-ANA-005 Pesticide Residues Analysis in Cannabis and Cannabis Products by LC-MS.
- IV. This method is capable of identifying and quantifying 85 pesticide active ingredients included on the "Mandatory cannabis testing for pesticide active ingredients – List and Limits" published by Health Canada.
- V. The complete list of pesticide active ingredients that are detectable and quantifiable with this method can be found in Appendix B.

5.2 Linearity & Range

Figure 5.2.1 below shows a calibration curve for Resmethrin, as an example:

- I. Calibrations are available for all pesticide active ingredients included in this method (see Appendix B for the complete list).
- II. The average R² value for all pesticide active ingredients was 0.996 across a range of 5-2000ppb.

Issue date: 3 October 2022

Revised date: 30 January 2023

5.3 Accuracy & Precision

Table 5.3.1 shows an example of recovery and repeatability data for several pesticide
active ingredients spiked at 10ppb and added to a dried flower cannabis matrix:

PESTICIDE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
Acephate	10.6568	10.7642	10.6415	10.6875	0.0660	0.63%	106.9%
Azadirachtin	12.1751	12.5720	11.6071	12.1180	0.4848	4%	121.2%
Iprodione	9.1905	9.7724	9.1398	9.3657	0.3515	3.75%	93.7%
Permethrin	8.5320	8.2112	7.9545	8.2325	0.2893	3.51%	82.3%
Phenothrin	11.1841	10.9633	10.9320	11.0264	0.1374	1.25%	110.3%
Dodemorph	12.0986	12.2267	12.0798	12.1350	0.0799	0.66%	121.3%
Fluopyram	13.2536	13.4809	13.0327	13.2557	0.2241	1.69%	130.3%
Hexythiazox	14.6192	14.2692	14.2132	14.3672	0.2200	1.53%	143.7%

*All values shown are in ppb, unless otherwise indicated

Table 5.3.2 shows an example of repeatability data for several pesticide active ingredients in a cannabis oil matrix:

PESTICIDE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Carbofuran	2.35	2.33	2.32	2.33	0.015	0.65%
Metalaxyl	2.82	2.77	2.74	2.78	0.040	1.46%
Dimethomorph	4.35	4.30	4.29	4.31	0.032	0.75%
Fluopyram	2.48	2.44	2.55	2.49	0.056	2.24%
Boscalid	1.75	1.75	1.57	1.69	0.104	6.15%
Tebuconazole	1.55	1.52	1.55	1.54	0.017	1.12%

*All values shown are in ppb, unless otherwise indicated

Table 5.3.3 shows intermediate precision data for a sample of pesticide active ingredients spiked to 100ppb in a dried cannabis matrix, run by different analysts on different days:

ANALYST 1	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Clothiandin	75.88	76.44	75.97	76.10	0.30	0.40%
Acetamiprid	131.00	131.77	131.12	131.30	0.41	0.32%
Dinotefuran	88.83	89.58	89.83	89.41	0.52	0.58%
Chlorantraniliprole	84.33	83.17	82.37	83.29	0.99	1.18%
Paclobutrazol	118.31	116.79	119.55	118.22	1.38	1.17%
Myclobutanil	108.33	110.71	112.14	110.39	1.92	1.74%
ANALYST 2	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Clothiandin	97.11	96.87	96.59	96.86	0.26	0.27%

Acetamiprid	103.7	104.66	103.48	103.95	0.63	0.60%
Dinotefuran	98.68	99.39	99.57	99.21	0.47	0.47%
Chlorantraniliprole	109.05	108.33	109.31	108.90	0.51	0.47%
Paclobutrazol	124.34	126.34	124.88	125.19	1.03	0.83%
Myclobutanil	134.58	134.72	135.16	134.82	0.30	0.22%

*All values in ppb, unless otherwise indicated

- I. The above data is an example, and was repeated across multiple concentrations for all pesticide active ingredients and cannabis matrices.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

5.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each pesticide active ingredient in this method is 1ppb.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- IV. The LoD for each pesticide active ingredient in this method is 0.1ppb.

5.5 Summary

Table 5.5.2	L below	provides a	validation	summary	/:
10010 0.0.		provides d	vanaation	Jannar	

PARAMETER	RESULT
Average R ²	0.9993
Calibration Range	5-2000ppb
LoQ	1ppb
LoD	0.1ppb
Specificity	Tested in various matrices, shown to be specific.
	Only CRMs used for calibrations.
Accuracy	±2%, with an RSD ~2%
Repeatability	RSD <0.1-2%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times across several matrices.
Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Method tested with different extraction
	solvents & different pH. Additional experiments
	are currently in progress.

5.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

6) AFLATOXIN ANALYSIS

6.1 Method Details

- I. Analysis of aflatoxins by Liquid Chromatography Mass Spectrometry (LC-MS)
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapter <561>.
- III. Complete method details are outlined in LAB-SOP-ANA-006 Analysis of Aflatoxins in Cannabis and Cannabis Products by LC-MS.

6.2 Linearity & Range

Figure 6.2.1 below shows a calibration curve for Aflatoxin G1, as an example:

- I. Calibration curves are available for Aflatoxin B1, B2, G1 & G2 as well as Ochratoxin A.
- II. Average R² value for all aflatoxins was 0.9998 with an average RSD of 1.86%.
- III. The range for Aflatoxin B1 & G1 is 1-200ppb, while the range for Aflatoxin B2 & G2 is 0.3-60ppb.

6.3 Accuracy & Precision

Table 6.3.1 below shows recovery and repeatability data for a dried cannabis flower matrix spiked with 30ppb of Aflatoxin B2 & G2, and 100ppb of B1 & G1:

AFLATOXIN	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
B1	115.437	114.574	115.820	115.280	0.640	0.56%	115.3%

G1	128.034	128.475	129.096	128.535	0.420	0.42%	128.5%
B2	34.077	33.623	34.060	33.920	0.760	0.76%	113.1%
G2	37.232	38.390	38.603	38.075	0.737	1.94%	126.9%

*All values shown are in ppb, unless otherwise indicated

Table 6.3.2 below shows recovery and repeatability data for a dried cannabis flower matrix spiked with 3ppb of Aflatoxin B2 & G2, and 10ppb of B1 & G1:

AFLATOXIN	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
B1	9.724	9.594	9.500	9.606	0.110	1.17%	96.0%
G1	10.472	10.404	10.191	10.355	0.140	1.42%	103.6%
B2	2.960	2.876	2.852	2.896	0.050	1.96%	96.5%
G2	3.257	3.326	3.278	3.287	0.030	1.08%	109.6%

*All values shown are in ppb, unless otherwise indicated

Table 6.3.3 below shows recovery and repeatability data for a dried cannabis flower matrix spiked with 1.5ppb of Aflatoxin B2 & G2, and 5ppb of B1 & G1:

AFLATOXIN	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
B1	4.186	4.377	4.433	4.332	0.129	2.99%	86.7%
G1	4.418	4.517	4.693	4.540	0.140	3.07%	90.8%
B2	1.504	1.418	1.461	1.461	0.043	2.94%	97.4%
G2	1.591	1.571	1.612	1.591	0.020	1.29%	106.1%

*All values shown are in ppb, unless otherwise indicated

Table 6.3.4 below shows recovery and repeatability data for a cannabis matrix spiked with 3 different concentrations of Ochratoxin A:

OCHRATOXIN	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
1ppb Spike	1.39	1.38	1.27	1.30	0.08	5.78%	130.0%
10ppb Spike	11.49	11.25	11.41	11.39	0.12	1.06%	113.9%
20ppb Spike	25.15	25.62	24.90	25.22	0.36	1.44%	126.1%

*All values shown are in ppb, unless otherwise indicated

Table 6.3.5 shows intermediate precision data for a sample of aflatoxins spiked to 50ppb of Aflatoxins B1 & G1, 15ppb of Aflatoxins B2 & G2 & 20ppb of Ochratoxin A in a dried cannabis matrix, run by different analysts on different days:

ANALYST 1	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Aflatoxin B1	59.79	60.41	59.98	60.06	0.32	0.53%
Aflatoxin G1	64.75	67.27	66.16	66.06	1.26	1.91%
Aflatoxin B2	17.15	17.76	17.43	17.45	0.31	1.75%

Aflatoxin G2	18.90	19.71	19.66	19.42	0.45	2.34%
Ochratoxin A	25.15	25.62	24.90	25.22	0.36	1.44%
ANALYST 2	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
Aflatoxin B1	56.36	54.58	56.54	55.83	1.08	1.94%
Aflatoxin G1	60.03	59.03	60.98	60.01	0.98	1.62%
Aflatoxin B2	16.05	16.11	16.33	16.16	0.15	0.91%
Aflatoxin G2	16.97	16.46	16.43	16.62	0.30	1.83%
Ochratoxin A	21.52	23.46	22.47	22.48	0.97	4.33%

*All values shown are in ppb, unless otherwise indicated

- I. The above data are examples, and they were repeated across multiple concentrations for all aflatoxins and cannabis matrices.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

6.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each aflatoxin was found to be 0.3ppb.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- IV. The LoD for each aflatoxin was found to be 0.1ppb.

6.5 Summary

Table 6.5.1 below provides a validation summary:

PARAMETER	RESULT
Average R ²	0.9996
Calibration Range	Aflatoxin B1 & G1: 1-200ppb
	Aflatoxin B2 & G2: 0.3-60ppb
LoQ	0.3ppb
LoD	0.1ppb
Specificity	Tested in various matrices, shown to be specific.
	Only CRMs used for calibrations.
Accuracy	±1%, with an RSD <0.4-1.5%
Repeatability	RSD <0.4-1.5%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times across several matrices.

Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Tested with different extraction solvents,
	different pH and different matrices Additional
	experiments are currently in progress.

6.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

7) TERPENE ANALYSIS

7.1 Method Details

INNOVATE

hytoceuticals

- I. Analysis of terpenes using Gas Chromatography Flame Ionization Detector (GC-FID).
- II. This method is a modified United Nations Office on Drugs and Crime (UNODC) method.
- III. Complete method details are outlined in LAB-SOP-ANA-003 Analysis of Terpenes from Different Matrices by GC-FID.
- IV. The complete list of terpenes that are detectable with this method can be found in Appendix C.

7.2 Linearity & Range

Figure 7.2.1 below shows a Eucalyptol calibration curve, as an example:

 A seven-point calibration curve was chosen (1ppm, 5ppm, 10ppm, 50ppm, 100ppm, 150ppm & 300ppm) to select the linear part of the calibration curves. The average R² value across this range was 0.994.

7.3 Accuracy & Precision

Table 7.3.1 shows an example of 50ppm of several different terpenes spiked to a dried flower cannabis matrix:

TERPENE	EXPECTED (ppm)	OBTAINED (ppm)	% RECOVERY
Camphene	50	48.026	96.1%
β -Myrcene	50	44.713	89.4%
Phellandrenes	50	50.061	100.1%
3-Carene	50	48.276	96.6%
Eucalyptol	50	53.712	107.4%
Ocimenes	50	54.915	109.8%

Table 7.3.2 shows repeatability data for a sample of terpenes in a dried flower cannabis matrix:

TERPENE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD
α-Pinene	8.894	9.198	8.674	8.922	0.263	2.95%
Camphene	54.439	56.970	52.745	54.718	2.126	3.88%
Sabinene	0.699	0.686	0.673	0.686	0.013	1.89%
β-Pinene	18.222	18.874	17.782	18.292	0.550	3.01%
β-Myrcene	68.073	71.715	65.578	68.455	3.086	4.51%
Phellandrenes	49.722	52.368	48.094	50.061	2.157	4.31%
3-Carene	54.735	56.754	53.354	54.948	1.710	3.09%
α -Terpinene	4.006	4.091	3.949	4.014	0.072	1.79%
o-Cymene	6.224	6.471	6.071	6.255	0.202	3.23%
D-Limonene	30.350	31.579	29.389	30.439	1.097	3.60%
Eucalyptol	59.475	62.624	57.406	59.835	2.627	4.39%
Ocimenes	54.438	57.691	52.615	54.915	2.572	4.68%
γ-Terpinene	3.063	3.136	3.031	3.077	0.054	1.75%
Sabinene	1.662	1.763	1.616	1.680	0.075	4.46%
hydrate						

*All values in ppm, unless otherwise indicated

- I. The above data are examples, and they were repeated across multiple concentrations for all terpenes and cannabis matrices.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

7.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each terpene was found to be 1ppm.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.

IV. The LoD for each terpene was found to be 0.1ppm.

7.5 Summary

PARAMETER	RESULT
Average R ²	0.994
Calibration Range	1-300ppm
LoQ	1ppm
LoD	0.1ppm
Specificity	Tested in various matrices, shown to be specific.
	One overlapping pair was identified: alpha-
	Cedrene & Caryophyllene. This pair can be
	further assigned by GC-MS. Only CRMs used for
	calibrations.
Accuracy	±5%, with an RSD <1-10%
Repeatability	RSD <1-5%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times across several matrices.
Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Additional experiments are currently in
	progress.

7.6 Conclusion

- I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.
- II. There is one pair for which this method was found not to be specific: alpha-Cedrene & Caryophyllene. Samples containing those terpenes will be further assigned by GC-MS.

Version: 3.0

8) **RESIDUAL SOLVENTS**

8.1 Method Details

- I. Analysis of residual solvents using Gas Chromatography Flame Ionization Detector (GC-FID).
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapter <467>.
- III. Complete method details are outlined in LAB-SOP-ANA-008 Residual Solvent Analysis for Cannabis and Cannabis Products by GC-FID.
- IV. The complete list of residual solvents that are detectable and quantifiable with this method can be found in Appendix D.

8.2 Linearity & Range

Figure 8.2.1 below shows a calibration curve for Acetone, as an example:

- I. Calibration curves are available for all other residual solvents. A complete list of residual solvents detected and quantified by this method is available in Appendix D.
- II. The average R² value across the liquid residual solvent range (100-5000ppm) was 0.9997.

8.3 Accuracy & Precision

Table 8.3.1 shows recovery and repeatability data for a cannabis oil matrix spiked with 2250ppm of various residual solvents:

ANALYTE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
Methanol	2469.9	2431.9	2429.7	2443.8	22.60	0.92%	108.6%
Ethanol	2469.6	2426.6	2442.5	2446.2	21.74	0.89%	97.1%**
Isopropanol	2437.8	2405.0	2412.9	2418.6	17.12	0.71%	107.5%
1-propanol	2481.2	2381.2	2432.8	2431.7	50.01	2.06%	108.1%
2-butanone	2329.5	2282.5	2277.6	2296.5	28.65	1.25%	102.1%
Ethyl acetate	2219.9	2282.4	2171.3	2224.6	55.69	2.50%	98.9%
Chloroform	2348.8	2336.1	2339.2	2341.4	6.62	0.28%	104.1%
Benzene	2209.8	2200.7	2188.2	2199.6	10.84	0.49%	97.8%

*All values shown are in ppm, unless otherwise indicated

**Note that the theoretical value for ethanol is 2515ppm.

Table 8.3.2 shows recovery and repeatability for a cannabis extract matrix spiked with 125ppm of three gaseous solvents:

ANALYTE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
Propane	159.1	155.1	154.4	156.22	2.54	1.63%	125.0%
Iso-Butane	128.92	128.29	127.27	128.16	0.83	0.65%	102.5%
Butane	112.64	111.05	109.38	111.02	1.63	1.47%	88.8%

*All values shown are in ppm, unless otherwise indicated

Table 8.3.3 shows recovery and repeatability data for a cannabis oil matrix spiked with 1000ppm of various residual solvents:

ANALYTE	RUN 1	RUN 2	RUN 3	MEAN	SD	RSD	% REC.
Methanol	887.6	713.3	857.3	819.4	93.12	11.37%	81.9%
Ethanol	1046.6	906.0	1026.0	992.9	75.93	7.65%	78.6%**
Isopropanol	907.7	825.9	903.5	879.0	46.06	5.24%	87.9%
1-propanol	1064.5	1012.5	1075.7	1050.9	33.72	3.21%	105.1%
2-butanone	821.2	778.9	785.9	795.3	22.67	2.85%	79.5%
Ethyl acetate	796.5	793.5	789.8	793.3	3.36	0.42%	79.0%
Chloroform	865.7	858.7	867.6	864.0	4.69	0.54%	86.4%
Benzene	829.9	847.5	811.6	829.7	17.95	2.17%	83.0%

*All values shown are in ppm, unless otherwise indicated

**Note that the theoretical value for ethanol is 1263ppm.

- I. The above data are examples, and they were repeated across multiple concentrations for all residual solvents.
- II. Reproducibility studies (between-laboratory comparisons) are currently in progress.

8.4 Limit of Detection & Limit of Quantification

- I. The Limit of Quantification (LoQ) was calculated based on the smallest concentration from the linear area of the calibration curve.
- II. The LoQ for each residual solvent was found to be 100ppm.
- III. The Limit of Detection (LoD) was determined based on the smallest concentration detected on the chromatogram which is distinguishable from the baseline.
- IV. The LoD for each residual solvent was found to be 10ppm.

8.5 Summary

Table 8.5.1 below provides a validation summary:

PARAMETER	RESULT
Average R ²	0.996
Calibration Range	100-5000ppm for liquid solvent
	100-2000ppm for gaseous solvent
LoQ	100ppm
LoD	10ppm
Specificity	Tested in various matrices, shown to be specific.
Accuracy	±1%, with an RSD <1.54%
Repeatability	RSD <0.4-1.5%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times.
Reproducibility	Inter-laboratory comparisons currently in
	progress.
Robustness	Tested with different extraction solvents.
	Additional experiments are currently in
	progress.

8.6 Conclusion

I. The results of internal validation studies have found this method to be specific, linear, precise, accurate and repeatable.

9) MICROBIOLOGICAL TESTING – UNITED STATES PHARMACOPOEIA

9.1 Method Details

INNOVATE

hytoceuticals

- I. Identification and enumeration of microbiological contaminants by conventional culture-based method.
- II. This method is derived from the United States Pharmacopoeia (USP) General Chapter <61> and <62>.
- III. Complete method details are outlined in LAB-SOP-MIC-002 & LAB-SOP-MIC-003.
- IV. This method is capable quantifying the Total Aerobic Plate Count (TAPC), Total Yeast & Mould Count (TYMC), Bile-Tolerant Gram-Negative Bacteria (BTGNB), and identifying objectionable organisms such as *Escherichia coli*, *Salmonella* spp., *Pseudomonas aeruginosa* & *Staphylococcus aureus* as well as pathogenic species of *Aspergillus*.
- V. Sterility, inclusivity and exclusivity tests were performed on all media, reagents and buffers before use. Each test was validated with a positive and negative control.

9.2 Selectivity & Identification

Table 9.2.1 below shows identification results for objectionable microbes in various cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REPEATABILITY
Flower	S. aureus	Positive	Positive	100%
Flower	S. aureus	Positive	Positive	
Oil	S. aureus	Positive	Positive	100%
Oil	S. aureus	Positive	Positive	
Flower	E. coli	Positive	Positive	100%
Flower	E. coli	Positive	Positive	
Oil	E. coli	Positive	Positive	100%
Oil	E. coli	Positive	Positive	
Flower	Salmonella spp.	Positive	Positive	100%
Flower	Salmonella spp.	Positive	Positive	
Oil	Salmonella spp.	Positive	Positive	100%
Oil	Salmonella spp.	Positive	Positive	
Flower	P. aeruginosa	Positive	Positive	100%
Flower	P. aeruginosa	Positive	Positive	
Oil	P. aeruginosa	Positive	Positive	100%
Oil	P. aeruginosa	Positive	Positive	
Flower	A. niger	Positive	Positive	100%
Flower	A. niger	Positive	Positive	

Oil	A. niger	Positive	Positive	100%
Oil	A. niger	Positive	Positive	
Flower	A. terreus	Positive	Positive	100%
Flower	A. terreus	Positive	Positive	
Oil	A. terreus	Positive	Positive	100%
Oil	A. terreus	Positive	Positive	
Flower	A. fumigatus	Positive	Positive	100%
Flower	A. fumigatus	Positive	Positive	
Oil	A. fumigatus	Positive	Positive	100%
Oil	A. fumigatus	Positive	Positive	

- I. The method indicated in LAB-SOP-MIC-003 identified specific organisms using selective and differential media, and further reconfirmed the species using biochemical and molecular techniques. Molecular analysis, biochemical analysis, and growth on selective media confirm the above-listed results. To spike the different matrixes, the ATCC strains (five passages) were used as a reference material.
- II. These experiments have been repeated across multiple matrices and cannabis samples, and have been found to be 100% repeatable for identifying and detecting any objectionable organisms listed in the compendium.

9.3 Accuracy & Precision

Table 9.3.1 shows recovery and repeatability data for the Total Aerobic Plate Count (TAPC) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	S. aureus	15,000	14,324	95.50%	96.60%
Flower	S. aureus	15,000	14,645	97.63%	
Flower	E. coli	75,000	74,950	99.90%	99.85%
Flower	E. coli	75,000	74,125	98.80%	
Flower	S. aureus	14,000	13,829	98.77%	98.66%
Flower	S. aureus	14,000	13,939	99.56%	
Flower	E. coli	28,000	27,978	99.90%	100.36%
Flower	E. coli	28,000	28,234	100.83%	
Flower	S. aureus	15,000	14,624	97.49%	97.50%
Flower	S. aureus	15,000	14,754	98.36%	
Flower	E. coli	82,000	82,728	100.88%	100.00%
Flower	E. coli	82,000	81,284	99.12%	
Flower	S. aureus	12,000	11,699	97.49%	98.69%

Flower	S. aureus	12,000	11,998	99.90%	
Flower	E. coli	89,000	89,145	100.16%	100.01%
Flower	E. coli	89,000	88,889	99.87%	
Flower	S. aureus	10,000	9,899	98.99%	99.19%
Flower	S. aureus	10,000	9,940	99.40%	
Oil	E. coli	5,500	5,534	100.61%	96.85%
Oil	E. coli	5,500	5,123	93.14%	

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

I. The TAPC was enumerated using one strain of gram positive (*Staphylococcus aureus* ATCC 6538) and one strain of gram negative (*Escherichia coli* ATCC 25922) bacteria, covering a wide range of pathogenic bacteria.

Table 9.3.2 shows recovery and repeatability data for the Bile-Tolerant Gram-Negative Bacteria (BTGNB) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	E. coli	66,000	66,700	101.06%	100.45%
Flower	E. coli	66,000	65,899	99.84%	
Flower	E. coli	26,000	25,749	99.03%	98.46%
Flower	E. coli	26,000	25,453	97.89%	
Flower	E. coli	72,000	72,245	100.34%	99.64%
Flower	E. coli	72,000	71,245	98.95%	
Flower	E. coli	69,000	68,945	99.92%	99.57%
Flower	E. coli	69,000	68,455	99.21%	
Oil	E. coli	6,300	6,295	99.92%	99.96%
Oil	E. coli	6,300	6,300	100.00%	

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

II. The population of bile-tolerant Gram-Negative Bacteria was analyzed using *Escherichia coli* (ATCC 25922), which is more prevalent than all other Gram-Negative bacteria tolerant of bile.

Table 9.3.3 shows recovery and repeatability data for Total Yeast & Mould Count (TYMC) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	A. niger	3,000	2,989	99.63%	96.28%
Flower	A. niger	3,000	2,788	92.93%	

Version: 3.0

Flower	A. niger	2,500	2,455	98.20%	96.28%
Flower	A. niger	2,500	2,359	94.36%	
Flower	A. niger	4,500	4,233	94.06%	95.80%
Flower	A. niger	4,500	4,389	97.53%	
Flower	A. niger	3,000	2,899	96.63%	94.07%
Flower	A. niger	3,000	2,745	91.50%	
Oil	A. niger	2,000	1,800	90.00%	93.63%
Oil	A. niger	2,000	1,945	97.25%	

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

- III. In Total Yeast and Mold Count, *A. niger* (ATCC 16888) was used, which is one of the most hazardous species of *Aspergillus*.
- IV. This method has been enhanced by incorporating cutting-edge technologies, including gravimetric sample preparation, semi-automated spiral plating, and automatic colony counting. The overall results show above 96% accuracy for enumeration with all different matrices.
- V. The above data are examples, and they were repeated across multiple concentrations for all microbes and cannabis matrices.
- VI. Reproducibility studies (between-laboratory comparisons) are currently in progress.

9.4 Summary

Table 9.4.1 below provides a validation summary:

PARAMETER	RESULT
Selectivity & Identification	Method has been tested for eight different
	types of micro-organisms across several
	cannabis matrices and found to be specific for
	selectivity and identification.
Accuracy	±5%
Intermediate Precision	Intra-laboratory comparisons done multiple
	times.
Reproducibility	Inter-laboratory comparisons currently in
	progress.

9.5 Conclusion

I. The results of internal validation studies have found this method to be specific, precise, accurate and repeatable.

10) MICROBIOLOGICAL TESTING – EUROPEAN PHARMACOPOEIA

10.1 Method Details

- I. Identification and enumeration of microbiological contaminants by conventional culture-based method.
- II. This method is derived from the European Pharmacopoeia (Ph. Eur.) General Chapters 2.6.12 and 2.6.13.
- III. Complete method details are outlined in LAB-SOP-MIC-006 & LAB-SOP-MIC-007.
- IV. This method is capable quantifying the Total Aerobic Plate Count (TAPC), Total Yeast & Mould Count (TYMC), Bile-Tolerant Gram-Negative Bacteria (BTGNB), and identifying objectionable organisms such as *Escherichia coli*, *Salmonella* spp., *Pseudomonas aeruginosa* & *Staphylococcus aureus* as well as pathogenic species of *Aspergillus*.
- V. Sterility, inclusivity and exclusivity tests were performed on all media, reagents and buffers before use. Each test was validated with a positive and negative control.

10.2 Selectivity & Identification

Table 10.2.1 below shows identification results for objectionable microbes in various cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REPEATABILITY
Flower	S. aureus	Positive	Positive	100%
Flower	S. aureus	Positive	Positive	
Oil	S. aureus	Positive	Positive	100%
Oil	S. aureus	Positive	Positive	
Flower	E. coli	Positive	Positive	100%
Flower	E. coli	Positive	Positive	
Oil	E. coli	Positive	Positive	100%
Oil	E. coli	Positive	Positive	
Flower	Salmonella spp.	Positive	Positive	100%
Flower	Salmonella spp.	Positive	Positive	
Oil	Salmonella spp.	Positive	Positive	100%
Oil	Salmonella spp.	Positive	Positive	
Flower	P. aeruginosa	Positive	Positive	100%
Flower	P. aeruginosa	Positive	Positive	
Oil	P. aeruginosa	Positive	Positive	100%
Oil	P. aeruginosa	Positive	Positive	
Flower	A. niger	Positive	Positive	100%
Flower	A. niger	Positive	Positive	

Oil	A. niger	Positive	Positive	100%
Oil	A. niger	Positive	Positive	
Flower	A. terreus	Positive	Positive	100%
Flower	A. terreus	Positive	Positive	
Oil	A. terreus	Positive	Positive	100%
Oil	A. terreus	Positive	Positive	
Flower	A. fumigatus	Positive	Positive	100%
Flower	A. fumigatus	Positive	Positive	
Oil	A. fumigatus	Positive	Positive	100%
Oil	A. fumigatus	Positive	Positive	

- The method indicated in LAB-SOP-MIC-007 identified specific organisms using selective and differential media, and further reconfirmed the species using biochemical and molecular techniques. Molecular analysis, biochemical analysis, and growth on selective media confirm the above-listed results. To spike the different matrixes, the ATCC strains (five passages) were used as a reference material.
- II. These experiments have been repeated across multiple matrices and cannabis samples, and have been found to be 100% repeatable for identifying and detecting any objectionable organisms listed in the compendium.

10.3 Accuracy & Precision

Table 10.3.1 shows recovery and repeatability data for the Total Aerobic Plate Count (TAPC) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	S. aureus	1000	960	96.00%	95.00%
Flower	S. aureus	1000	940	94.00%	
Flower	P. aeruginosa	20,200	19,400	96.04%	95.05%
Flower	P. aeruginosa	20,200	19,000	94.06%	
Flower	S. aureus	1,000	980	98.00%	97.00%
Flower	S. aureus	1,000	960	96.00%	
Flower	P. aeruginosa	20,200	19,800	98.03%	100.01%
Flower	P. aeruginosa	20,200	20,600	101.98%	
Flower	S. aureus	1,000	960	96.00%	94.00%
Flower	S. aureus	1,000	920	92.00%	
Flower	P. aeruginosa	20,200	19,400	96.04%	97.03%
Flower	P. aeruginosa	20,200	19,800	98.02%	
Oil	S. aureus	1,000	960	96.00%	94.00%

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

I. The TAPC was enumerated using one strain of gram positive (*Staphylococcus aureus* ATCC 6538) and one strain of gram negative (*Pseudomonas aeruginosa* ATCC 27853) bacteria, covering a wide range of pathogenic bacteria.

Table 10.3.2 shows recovery and repeatability data for the Bile-Tolerant Gram-Negative Bacteria (BTGNB) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	S. typhi	5,560	5,330	95.86%	96.90%
Flower	S. typhi	5,560	5,445	97.93%	
Flower	S. typhi	5,560	5,220	93.88%	96.94%
Flower	S. typhi	5,560	5 <i>,</i> 560	100.00%	
Flower	S. typhi	5,560	5,330	95.86%	96.90%
Flower	S. typhi	5,560	5,445	97.93%	
Oil	S. typhi	5,560	5,220	93.88%	94.87%
Oil	S. typhi	5,560	5,330	95.86%	

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

II. The population of bile-tolerant Gram-Negative Bacteria was analyzed using *Salmonella enterica serovar typhimurium* (ATCC 14028).

Table 10.3.3 shows recovery and repeatability data for Total Yeast & Mould Count (TYMC) of spiked samples in different cannabis matrices:

SAMPLE TYPE	MICROBE	TRUE VALUE	RESULT	% REC.	AVG % REC.
Flower	A. niger	440	420	95.45%	95.45%
Flower	A. niger	440	420	95.45%	
Flower	A. niger	440	420	95.45%	97.73%
Flower	A. niger	440	440	100.00%	
Flower	A. niger	440	420	95.45%	95.45%
Flower	A. niger	440	420	95.45%	
Oil	A. niger	440	400	90.91%	93.18%
Oil	A. niger	440	420	95.45%	

*All values shown in Colony Forming Units (CFU)/gram, unless otherwise indicated

Page 39 of 44

- III. In Total Yeast and Mold Count, *A. niger* (ATCC 16888) was used, which is one of the most hazardous species of *Aspergillus*.
- IV. This method has been enhanced by incorporating cutting-edge technologies, including gravimetric sample preparation, semi-automated spiral plating, and automatic colony counting. The overall results show above 96% accuracy for enumeration with all different matrices.
- V. The above data are examples, and they were repeated across multiple concentrations for all microbes and cannabis matrices.
- VI. Reproducibility studies (between-laboratory comparisons) are currently in progress.

10.4 Summary

Table 10.4.1 below provides a validation summary:

PARAMETER	RESULT	
Selectivity & Identification	Method has been tested for eight different	
	types of micro-organisms across several	
	cannabis matrices and found to be specific for	
	selectivity and identification.	
Accuracy	±5%	
Intermediate Precision	Intra-laboratory comparisons done multiple	
	times.	
Reproducibility	Inter-laboratory comparisons currently in	
	progress.	

10.5 Conclusion

I. The results of internal validation studies have found this method to be specific, precise, accurate and repeatable.

11) **DEFINITIONS**

ATCC – American Type Culture Collection

CRM – Certified Reference Material

% REC. – Percent recovery. Calculated by dividing the test result by the expected value and multiplying by 100. Used as an indicator of method accuracy.

12) APPENDICES

12.1 APPENDIX A – GC-MS PESTICIDE LIST

Limits of Detection and Quantification for Specific Pesticide Residues Quantified by GC-MS:

Pesticide Active Ingredient	LoD (ppb)	LoQ (ppb
Etridiazole	0.1	7.5
Quintozene	0.1	7.5
Parathion-methyl	1	25
Kinoprene	1	25
MGK-264	1	25
lpha-Endosulfan	1	75
Chlorphenapyr	1	25
β-Endosulfan	1	25
Endosulfan sulfate	1	25
Cyfluthrin	1	100
Cypermethrin	1	250

Version: 3.0

12.2 APPENDIX B – LC-MS PESTICIDE LIST

List of Pesticide Residues Quantified by LC-MS:

Pesticide Active Ingredient			
Abamectin	Dodemorph	Permethrin	
Acephate	Ethoprophos	Phenothrin	
Acequinocyl	Etofenprox	Phosmet	
Acetamiprid	Etoxazole	Piperonyl butoxide	
Aldicarb	Fenoxycarb	Pirimicarb	
Allethrin	Fenpyroximate	Prallethrin	
Azadirachtin	Fensulfothion	Propiconazole	
Azoxystrobin	Fenthion	Propoxur	
Benzovindiflupyr	Fenvalerate	Pyraclostrobin	
Bifenazate	Fipronil	Pyrethrins	
Bifenthrin	Flonicamid	Pyridaben	
Boscalid	Fludioxonil	Resmethrin	
Buprofezin	Fluopyram	Spinetoram	
Carbaryl	Hexythiazox	Spinosad	
Carbofuran	Imazalil	Spirodiclofen	
Chlorantraniliprole	Imidacloprid	Spiromesifen	
Chlorpyrifos	Iprodione	Spirotetramat	
Clofentezine	Kresoxim-methyl	Spiroxamine	
Clothianidin	Malathion	Tebuconazole	
Coumaphos	Metalaxyl	Tebufenozide	
Cyantraniliprole	Methiocarb	Teflubenzuron	
Cyprodinil	Methomyl	Tetrachlorvinphos	
Daminozide	Methoprene	Tetramethrin	
Deltamethrin	Mevinphos	Thiacloprid	
Diazinon	Myclobutanil	Thiamethoxam	
Dichlorvos	Naled	Thiophanate-methyl	
Dimethoate	Novaluron	Trifloxystrobin	
Dimethomorph	Oxamyl		
Dinotefuran	Paclobutrazol		

12.3 APPENDIX C – TERPENE LIST

List of Terpenes identifiable with GC-FID:

Terpene			
α-Bisabolol	α-Pinene	β-Pinene	
Borneol	Sabinene	β-Myrcene	
Camphene	γ-Terpinene	Phellandrenes	
Camphor	Sabinene hydrate	3-Carene	
Isoborneol	Terpinolene	α-Terpinene	
dl-Menthol	Fenchone	o-Cymene	
α -Terpineol	Linalool	D-Limonene	
γ-Terpineol	Fenchol, exo-	Eucalyptol	
Citronellol & Nerol	trans-Nerolidol	Ocimenes	
Pulegone	Caryophyllene oxide	Cis-β-Farnesene	
Geraniol	Gauiol	α-Humulene	
Geranyl acetate	Cedrol	Valencene	
α -Cedrene	β-Eudesmol	cis-Nerolidol	
β-Cedrene	Phytol I & II	Caryophyllene	

12.4 APPENDIX D – RESIDUAL SOLVENT LIST

List of Residual Solvents identifiable with GC-FID:

Residual Solvent			
1,1,1,2-Tetrafluoroethane	2,3-Dimethylbutane*	Triethylamine	
Methanol	3-Methylpentane*	Heptane	
2-Methylbutane	n-Hexane*	Ethylene glycol	
Pentane	1-Propanol	Toluene	
Ethanol	Hexane*	1-Pentanol	
Ethyl ether	2-Butanone	Ethylbenzene	
Acetone	Ethyl acetate	m-Xylene	
2,2-Dimethylbutane*	Chloroform	p-Xylene	
Isopropanol	Cyclohexane*	o-Xylene	
Acetonitrile	Benzene	Dimethyl sulfoxide	
Methylene chloride	Acetic acid	Tridecane	
2-Methylpentane*	iso-Octane	Methyl acetate	
tert-Butylmethyl ether	Methylethyl ketone	1-Butanol	
2-Butanol	2-Methyl-1-propanol	Isopropyl acetate	
3-Methyl-1-butanol	Isobutyl acetate	Butyl acetate	
Propane	Butane	Iso-Butane	

*Hexanes